Что такое молочнокислое брожение и полезно ли оно?

Примечания и ссылки

  1. Филипп Марк Дюфор, Франсуа Мориак: акварельный этнолог стран Аквитании, Les Dossiers d’Aquitaine, 2002, стр.115.
  2. и «  шампанское, Тиски и достоинство яблочно — молочного брожения  », Ревю де Vins де Франс , п о  547,декабрь 2010, стр.  75-76.
  3. ALEXANDRE Эрве , GRANVALET Cosette , Guilloux-BENATIER Michèle и REMIZE-BARNAVON Фабьенн , Молочнокислые бактерии в виноделии , Лавуазье,15 апреля 2008 г., 192  с.
  4. Oeno2011 — Материалы конференции 9- го  Международного симпозиума энологии Бордо: Материалы конференции 9- го  Международного симпозиума энологии Бордо

Паскаль Риберо-Гайон , Дени Дюбурдье , Бернар Донеш, Алин Лонво, Энологический договор , том 1, изд. Данод, стр.455.

Какие продукты получают в результате подобного брожения?

Если говорить о том, какие продукты брожения можно получить при помощи лактобактерий, то можно назвать несколько основных категорий.

  1. питания (ряженка, йогурты, варенцы, кефир, творог, сметана, масло сливочное, ацидофильная продукция и прочие).
  2. Корма силосного типа для сельскохозяйственных животных.
  3. Молочная кислота, которую используют при изготовлении безалкогольных напитков, выделке меховых шкур и прочее.
  4. Хлебопечение, производство сыров.
  5. Консервирование овощей и фруктов.

Все это доказывает важное значение бактерий определенных видов в жизни людей, их промышленной деятельности

Химизм маслянокислого брожения

Маслянокислое брожение было открыто Луи Пастером в 1861 г.

Краткий суммарный эффект процесса обычно выражают следующим уравнением:

Расщепление сахара при маслянокислом брожении происходит с образованием масляной кислоты, углекислого газа и водорода. Хотя химизм маслянокислого брожения полностью еще не изучен, тем не менее он может быть объяснен на основе реакций, протекающих при спиртовом брожении.

При маслянокислом брожении все превращения идут по тому же пути, что и при спиртовом, вплоть до образования уксусного альдегида.

Однако восстановления образовавшегося ацетальдегида до этанола не происходит, так как в ферментативном комплексе маслянокислых бактерий отсутствует редуктаза. Вместо восстановления ацетальдегида происходит его альдольное уплотнение с последующей трансформацией альдоля в масляную кислоту. Альдольное уплотнение катализируется ферментом карболигазой:

В качестве побочных продуктов брожения часто образуется этиловый спирт, а также бутиловый спирт, ацетон и уксусная кислота.

Индивидуальные доказательства

  1. Х. Роберт Хортон, Лоуренс А. Моран, К. Грей Скримджер, Марк Д. Перри, Дж. Дэвид Рон и Карстен Биле (переводчик): Biochemie . Исследования Пирсона; 4-е обновленное издание 2008 г .; ISBN 978-3-8273-7312-0 ; С. 460.
  2. Катарина Мунк (Ред.): Карманный учебник Биология: Микробиология . Thieme Verlag Stuttgart 2008; ISBN 978-3-13-144861-3 ; С. 355.
  3. Георг Фукс (Ред.), Ганс. Г. Шлегель (Автор): Общая микробиология . Thieme Verlag Stuttgart; 8-е издание 2007 г .; ISBN 3-13-444608-1 ; С. 355.
  4. Wytske de Vries и AH Stouthamer: Путь ферментации глюкозы в связи с систематикой бифидобактерий . В: Журнал бактериологии . Лента93 (2) , 1967, стр.574 576 (английский).
  5. Беннингхофф / Дренкхан (ред.): Анатомия, Том 1 — Макроскопическая анатомия, гистология, эмбриология, клеточная биология, Mchn. И Йена (16-е изд.) 2003, стр. 160f.
  6. Пол Хабер: Руководство по медицинскому обучению. Реабилитация к соревновательным видам спорта . Спрингер, Вена; 3-й, обновленный и расширенный Выпуск 2009 г .; ISBN 978-3-211-75635-5 ; С. 62.
  7. см. SCHMIDT / LANG: Physiologie des Menschen, 30-е издание, Heidelberg 2007, стр. 931, раздел «Laktatutilisation».
  8. Х. Роберт Хортон, Лоуренс А. Моран, К. Грей Скримджер, Марк Д. Перри, Дж. Дэвид Рон и Карстен Биле (переводчик): Biochemie . Исследования Пирсона; 4-е обновленное издание 2008 г .; ISBN 978-3-8273-7312-0 ; С. 460f.
  9. Альберт Л. Ленингер, Дэвид Л. Нельсон и Майкл М. Кокс: Lehninger Biochemie . Спрингер, Берлин; 3-й, полностью переработанный. и эксп. Выпуск 2009 г .; ISBN 978-3-540-41813-9 ; С. 584ff.

Коллоидные и физические процессы

Коллоидные процессы, происходящие при замесе и образовании теста, не завершаются к моменту окончания замеса, а продолжаются и во время последующего брожения теста. Пожалуй, только адсорбционное связывание влаги белками, крахмалом и отрубистыми частицами муки можно считать в основном завершенным при замесе теста. Однако и этот процесс в известной мере продолжается при брожении теста.

Уменьшение плотности структуры белков теста, происходящее в результате как осмотических процессов набухания, так и дезагрегации белков протеиназой, увеличивает площадь их поверхности, которая может участвовать в адсорбционном связывании влаги.

При брожении теста продолжают интенсивно развиваться процессы набухания коллоидов, в том числе неограниченное набухание и пептизация белков теста и слизей муки.

Постепенное повышение кислотности и накопление спирта в тесте способствуют увеличению гидрофильности коллоидов теста.

Ограниченное набухание белков теста, продолжающееся при его брожении, уменьшает в нем количество жидкой фазы, улучшая тем самым его реологические свойства. Неограниченное набухание и пептизация, наоборот, увеличивают переход веществ в жидкую фазу теста, ухудшая его реологические свойства.

В тесте из муки различной силы эти процессы происходят с разной скоростью. Процессы набухания в тесте из сильной муки протекают замедленно, достигая максимума только к концу брожения теста. Неограниченное набухание и пептизация белков при этом незначительны.

В тесте из слабой муки ограниченное набухание белков протекает относительно быстро. После достижения максимума ограниченного набухания вследствие малой структурной прочности белка, ослабляемой также интенсивным протеолизом, начинается процесс неограниченного набухания, переходящий в процесс пептизации. Поэтому в тесте из слабой муки количество жидкой фазы быстро увеличивается, что ведет к ухудшению реологических свойств теста, к его разжижению.

Механическое воздействие на тесто во время брожения, осуществляемое в виде обминки, способствует ускорению набухания белков теста из сильной муки и поэтому улучшает его реологические свойства. Интенсивная обминка теста из очень слабой муки приводит к дополнительному ускорению разрушения и без того ослабленной структуры набухших белков теста и поэтому — к дополнительному ускорению их пептизации, вызывающему ухудшение структурно-механических свойств теста.

В процессе брожения теста (или опары) происходит увеличение его объема, вызванное разрыхлением пузырьками диоксида углерода, накапливающегося в результате спиртового брожения. Само по себе это разрыхление кажется бесполезным, так как основная часть диоксида углерода будет вытеснена из теста при обминке, последующем делении на куски и формовании, однако известную пользу оно все же дает. Вследствие увеличения теста в объеме при его брожении происходит дальнейшее как бы вытягивание и растягивание клейковинных пленок из набухших частиц муки. Последующее слипание этих пленок при обминке теста и механических операциях его разделки обеспечивает создание в тесте структурного губчатого белкового каркаса, обусловливающего формо- и газоудерживающую способность теста в решающих стадиях технологического процесса — при окончательной расстойке и выпечке. В результате этого мякиш хлеба приобретает мелкую, тонкостенную и равномерную пористость, характерную для хорошего пшеничного хлеба.

Температура теста (и опары) в процессе брожения обычно увеличивается на 1-2 “С по сравнению с начальной температурой теста сразу после замеса. Обусловлено это экзотермичностью процесса брожения и некоторым, очевидно незначительным, адсорбционным связыванием влаги, продолжающимся при брожении теста.

МИКРОБИОЛОГИЯ Учебное пособие — 2012

9.5.2. Гомоферментативное молочнокислое брожение

Характеристика молочнокислых бактерий. Молочнокислые бактерии — специфическая группа микроорганизмов, главной особенностью которых является образование молочной кислоты в качестве основного продукта брожения.

Молочнокислые бактерии характеризуются сложными потребностями в питательных веществах, поэтому они практически не обнаруживаются в водоемах или почве. Чаще всего они встречаются в молоке и молочных продуктах, на растениях и разлагающихся растительных остатках, в желудочно-кишечном тракте и на слизистых оболочках человека и животных.

По форме клеток их разделяют на шаровидные и палочковидные. Молочнокислые бактерии грамположительны, в большинстве неподвижны, спор, как правило, не образуют (исключение составляет атипичный вид Sporolactobacillusinulinus, выделенный из силоса, образующий споры и обладающим активной подвижностью).

В отношении нуклеотидного состава ДНК группа молочнокислых бактерий весьма гетерогенна — молярное содержание ГЦ-пар оснований у них варьирует от 32 до 52 %.

Молочнокислые бактерии относят к группе факультативных анаэробов. Однако в отличие от бактерий семейства Enterobacteriaceaeони не содержат гемопротеинов (цитохромов и каталазы) и единственным способом синтеза АТФ у них является молочнокислое брожение. Тем не менее лактобактерии могут расти в присутствии кислорода воздуха, являясь аэротолерантными анаэробами. Лактобактерии — единственная группа бактерий, лишенных каталазы, но способных расти в присутствии кислорода воздуха. Каталаза — фермент, расщепляющий пероксид углерода, образующийся при окислении субстрата, на воду и кислород. У молочнокислых бактерий функцию каталазы выполняет пероксидаза. Отсутствие каталазной активности при способности расти в аэробных условиях является одним из диагностических тестов распознавания этой группы микроорганизмов.

Молочнокислые бактерии, в отличие от большинства других микроорганизмов, способны расщеплять молочный сахар — лактозу. Для включения лактозы в катаболизм лактобактерии расщепляют ее под действием фермента β-галактозидазы на две гексозы:

Поскольку в процессе своей жизнедеятельности лактобактерии накапливают молочную кислоту, они довольно кислототолерантны и способны расти при низких значениях pH (3,5—3,0).

В зависимости от конечных продуктов метаболизма молочнокислые бактерии подразделяют на гомоферментативные (расщепляющие сахара по гексозодифосфатному пути) и гетероферментативные (расщепляющие сахара по пентозофосфатному пути) (табл. 7).

Таблица 7. Некоторые представители молочнокислых бактерий, различающихся по форме клеток и типу брожения

Облигатно гомоферментативные

(подрод Termobacterium)

Облигатно гетероферментативные

(подрод Betabacterium)

Факультативно гетероферментативные*

(Streptobacterium)

кокки

палочки

кокки

палочки

палочки

Lactococcus:

Lc. lactis

Lc. cremoris

Streptococcus:

S. thermophilus

Enterococcus:

E. faecalis

Pediococcus:

P. cerevisiae

Lactobacillus delbruckii

L. bulgaricus

L. lactis

L. acidophilus

L. helveticus

L. jensenii

L. salivarius

Leuconostoc mesenteroides

Leu. cremoris

Leu. dextranicum

L. brevis

L. buchneri

L. fermentum

L. kandleri

L. kefir

L. plantarum

L. casei

L. curvatus

L. sake

* Молочнокислые палочки, отнесенные к факультативно гетероферментативным (подрод Streptobacterium), сбраживают гексозы по гликолитическому пути, а пентозы — по окислительному пентозофосфатному пути. В первом случае эти лактобациллы осуществляют гомоферментативное, а во втором — гетероферментативное молочнокислое брожение.

Гомоферментативные молочнокислые бактерии в качестве основного источника энергии могут использовать моносахара (глюкозу, галактозу) и олигосахариды (лактозу, мальтозу). Превращение глюкозы до пирувата происходит по гликолитическому пути (рис. 27). В данном случае акцептором электронов окисляемого субстрата является пируват: на него переносятся 2 электрона с восстановленного НАДН2, что приводит к образованию молочной кислоты:

Энергетический выход при гомоферментативном молочнокислом брожении составляет 2 АТФ на одну молекулу сброженной глюкозы.

ПредыдущаяСледующая

Химизм молочнокислого брожения

По характеру возбуждаемых биохимических реакций молочнокислые бактерии делятся на две группы: типичные (гомоферментативные) и нетипичные (гетероферментативные).

Типичные молочнокислые бактерии осуществляют гладкое расщепление сахаров до молочной кислоты без образования заметных количеств каких-либо побочных продуктов. Нетипичные же молочнокислые бактерии наряду с молочной кислотой всегда продуцируют большее или меньшее количество побочных продуктов — уксусной кислоты, янтарной кислоты, этилового спирта, углекислого газа и пр. Это обстоятельство свидетельствует о различии в сущности протекающих биохимических реакций. В самом общем виде процесс гомоферментативного молочнокислого брожения выражается очень простым уравнением:

При этом поэтапно распад моносахаридов идет с образованием тех же продуктов, что и при спиртовом брожении, вплоть до образования пировиноградной кислоты. Однако с момента образования пировиноградной кислоты механизм процесса изменяется: в комплексе ферментов у молочнокислых бактерий отсутствует карбоксилаза, в результате чего вместо расщепления пировиноградной кислоты на уксусный альдегид и углекислый газ она восстанавливается в молочную кислоту. Процесс восстановления пировиноградной кислоты в молочную катализируется ферментом редуктазой.

Для гетероферментативного молочнокислого брожения чаще всего приводят следующее схематическое уравнение:

Возникновение побочных продуктов брожения может быть объяснено тем, что микроорганизмы, вызывающие гетероферментативное молочнокислое брожение, в комплексе ферментов содержат карбоксилазу. Пировиноградная кислота расщепляется при этом до уксусного альдегида и CO2 лишь частично. В результате разнообразных превращений уксусного альдегида и пировиноградной кислоты и происходит возникновение янтарной, уксусной кислот и этилового спирта.

Таким образом, гетероферментативное молочнокислое брожение протекает более сложно, чем гомоферментативное. Количественные соотношения между накапливающимися побочными продуктами гетероферментативного молочнокислого брожения могут быть самыми различными: молочной кислоты может накопиться до 40% от количества сброженного сахара, янтарной кислоты — около 20%, этилового спирта и уксусной кислоты примерно поровну — по 10%, газов — около 20%. Иногда выход газов уменьшается, но тогда в среде появляется муравьиная кислота (HCOOH).

Суть процессов брожения

Если говорить о том, что собой представляет процесс брожения, то следует указать на его биохимическую природу. Ведь, по своей сути, это просто деятельность бактерий, которые добывают себе энергию для жизни, вырабатывая при этом различные побочные продукты.

В целом брожение можно обозначить одним словом — окисление. Анаэробный распад какого-либо вещества под влиянием тех или иных бактерий, который приводит к образованию целого ряда продуктов. Какое вещество лежит в основе, а также что получится в результате, определяется типом самого процесса. Выделяют несколько вариантов брожения, поэтому существует своя классификация для данных преобразований.

Необходимое оборудование

Как мы уже отметили выше, среди самых важных атрибутов следует отметить емкость для брожения

Если говорить о домашнем проведении процедуры, то тогда следует обратить внимание на чистоту используемой посуды при консервации, изготовлении простокваши и прочих продуктов. Одним из способов добиться сокращения численности посторонних популяций микроорганизмов является стерилизация емкостей перед их использованием

Какая посуда подойдет для гетероферментативного брожения? Это может быть стеклянная либо качественная пластиковая (полипропиленовая, полиэтиленовая) емкость, которая способна плотно закрываться крышкой.

В промышленности используют специальные устройства для обеззараживания и очищения тары перед началом процесса брожения.

Что такое молочнокислое брожение (лактоферментация)?

Ферментация продуктов – это процесс, при котором бактерии, дрожжи, плесень или грибки расщепляют углеводы, такие как крахмал и сахар, на кислоты, газы или спирт. В результате получается ферментированный пищевой продукт с желаемым вкусом, ароматом или текстурой ().

Существуют различные виды ферментации: вино производится путем спиртовой ферментации с использованием дрожжей, уксус ферментируется бактериями, продуцирующими уксусную кислоту, а соевые бобы ферментируются плесенью, в результате чего получают темпе ().

Термин «лакто» относится к молочной кислоте, которая является типом кислоты, образующейся при расщеплении сахара в бескислородной среде. Впервые она была идентифицирована в молоке, которое содержит сахарную лактозу, отсюда и название молочная кислота.

Молочнокислое брожение использует бактерии, продуцирующие молочную кислоту (в основном из рода Lactobacillus), а также некоторые дрожжи. Эти бактерии расщепляют сахара в пище с образованием молочной кислоты, а иногда и алкоголя или углекислого газа (, , ).

Примерами продуктов, получаемых в результате молочнокислого брожения являются:

  • ферментированное молоко
  • йогурты
  • мясо
  • хлеб на заквасках
  • оливки
  • квашеная капуста
  • кимчхи
  • соленья (, )

Кроме того, во всем мире производится большое количество менее известных традиционных лактоферментированных продуктов. К ним относятся турецкий шалгам, который представляет собой сок красной моркови и репы, и эфиопская ынджера – лепешка на закваске (, , ).

КРАТКАЯ ХАРАКТЕРИСТИКА МОЛОЧНОКИСЛЫХ БАКТЕРИЙ

Молочнокислое брожение лежит в основе силосования, квашения овощей, переработки молока в кисломолочные продукты и сыр. Кислый вкус черного хлеба определяется также молочной кислотой. Данные процессы вызывает группа молочнокислых бактерий, которая очень разнообразна и широко распространена в природе.

Молочнокислые бактерии обитают на поверхности растений, в молоке, на пищевых продуктах, в кишечнике человека и животных.

Молочнокислые бактерии в основном — анаэробы, но существуют виды, которые способны жить в аэробных условиях. Клетки молочнокислых бактерий по форме кокки или палочки, могут быть одиночными или соединены в цепочки.

Молочнокислые бактерии грамположительные, не способны образовывать споры, требовательны к источникам азота и витаминам (многие из них не развиваются на простых синтетических средах).

Классификация молочнокислых бактерий еще недостаточно разработана. Большинство исследователей кокковые формы объединяют в роды Streptococcus и Leuconostoc, а палочковидные — в род Lactobacillus.

Молочнокислые бактерии можно разделить:

— на гомоферментативные(конечным продуктом брожения является молочная кислота)

глюкоза молочная кислота

— на гетероферментативные(конечными продуктами брожения являются уксусная кислота, глицерин, этиловый спирт)

глюкоза молочная кислота уксусная кислота глицерин этиловый спирт

Молочнокислые бактерии сбраживают моно- и дисахариды. Часто те из них, которые обитают в молоке, сбраживают лактозу, но не действуют на сахарозу. В качестве источника азота эта группа бактерий используют пептоны, смесь аминокислот.

По отношению к температуре молочнокислые бактерии можно разделить:

— на мезофильные — с оптимумом роста 25-35 0 С

— на термофильные— с оптимумом роста около 40-45 0 С.

Отдельные молочнокислые бактерии холодоустойчивы и могут развиваться при относительно низких положительных температурах (5 0 С и ниже). При нагревании до 60-80 0 С они гибнут в течение 10-30 мин.

Молочнокислые бактерии обладают определенной протеолитической активностью, обусловливаемой действием протеиназ и пептидаз.

Протеолитическую активность проявляют как кокковые формы, так и термофильные палочки, стрептобактерии. В процессе протеолиза белков молока, особенно в начале культивирования определенных штаммов в молоке, происходит накопление аминокислот: главным образом аспарагиновой кислоты, глицина, серина, глутаминовой кислоты, треонина, тирозина, валина, фенилаланина, изолейцина, а также пептидов.

Молочнокислые палочковидные бактерии обладают большей протеолитической активностью, чем кокковые формы. Так, L.bulgaricus, L.casei могут переводить до 25-30% казеина в растворимую форму, тогда как Str. cremoris и Str.lactis — 15 — 17%.

Гидролиз белков молока молочнокислыми бактериями осуществляется с помощью внеклеточных протеиназ. Существует прямая зависимость между степенью созревания сыра, его вкусом, ароматом и содержанием в нем свободных аминокислот, накапливаемых протеолитически активными молочнокислыми бактериями.

Для молочнокислых бактерий лучшая питательная среда — молоко. В нем есть все необходимые вещества для развития этих микроорганизмов. В такой среде могут развиваться и другие микроорганизмы: дрожжи, плесени, гнилостные, маслянокислые бактерии. Но молочная кислота быстро подавляет их рост.

Если простокваша долго сохраняется на воздухе, то на ее поверхности образуется белая бархатистая морщинистая пленка. Такая же пленка бывает на поверхности рассола при квашении огурцов, капусты и других овощей. Это и есть молочная плесень — Geotrichum candidum. Она всегда сопутствует молочнокислому брожению и является его нежелательным спутником. Окисляя молочную кислоту, образуемую молочнокислыми бактериями, до углекислого газа и воды, молочная плесень снижает кислотность. В результате в среде начинают развиваться гнилостные бактерии.

77.243.189.108 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

Основы процесса молочнокислого брожения

С химической точки зрения эти превращения представляют собой ряд последовательных стадий.

  1. Сначала происходит изменение исходного субстрата, то есть изменяется углеродная цепь вещества (углевода). Это приводит к появлению промежуточных соединений совершенно иной природы, относящихся к разным классам. Например, если исходный субстрат — глюкоза, то она перестраивается в глюконовую кислоту.
  2. Окислительно-восстановительные реакции, сопровождающиеся выделением газов, образованием побочных продуктов. Основной единицей в ходе всего процесса является молочная кислота. Именно она вырабатывается и накапливается в ходе брожения. Однако это не единственное соединение. Так, происходит формирование молекул уксусной кислоты, этилового спирта, углекислого газа, воды, иногда и других сопровождающих.
  3. Энергетический выход процесса в виде молекул аденозинтрифосфорной кислоты (АТФ). На одну молекулу глюкозы приходится 2 молекулы АТФ, если же исходный субстрат более сложного строения, например целлюлоза, тогда три молекулы АТФ. Эту энергию используют молочнокислые бактерии для дальнейшей жизнедеятельности.

Естественно, что если разбираться в биохимических превращениях подробно, то следует указывать все промежуточные молекулы и комплексы. Такие, например, как:

Однако этот вопрос заслуживает отдельного внимания и рассматриваться должен с точки зрения биохимии, поэтому его затрагивать в данной статье не будем. Более подробно рассмотрим, какова технология производства молочнокислых продуктов и какие виды рассматриваемого брожения существуют.

Изменение кислотности теста

В процессе брожения происходит увеличение кислотности опары и теста, вызванное накоплением продуктов, имеющих кислую реакцию. Титруемая кислотность опары и теста возрастает, а pH сдвигается в сторону более кислой реакции среды. Численное значение pH пшеничного теста из сортовой муки за время брожения изменяется с 6 примерно до 5.

Увеличение кислотности опары и теста в процессе брожения происходит в основном в результате образования и накопления ряда кислот. В выброженном тесте присутствуют молочная, уксусная, янтарная, яблочная, муравьиная, винная, лимонная и некоторые другие органические кислоты. При приготовлении теста на прессованных дрожжах нарастание его кислотности в результате брожения примерно на две трети обусловлено накоплением в тесте молочной кислоты. Значительную роль играет и накопление уксусной кислоты. На долю всех остальных кислот падает обычно менее 10% кислотности теста.

Принято считать, что накопление в пшеничном тесте молочной и уксусной кислот является результатом брожения, вызываемого гетероферментативными молочнокислыми бактериями.

В накоплении молочной кислоты в тесте могут играть известную роль и гомоферментативные молочнокислые бактерии. При приготовлении пшеничного теста на прессованных дрожжах эти бактерии вносятся в тесто в основном с мукой. Следует отметить, что и товарные прессованные дрожжи содержат известное количество кислотообразующих бактерий.

Виды молочнокислого брожения

Различают т. н. гомоферментативное и гетероферментативное молочнокислое брожение, в зависимости от выделяющихся продуктов помимо молочной кислоты и их процентного соотношения. Отличие также заключается и в разных путях получения пирувата при деградации углеводов гомо- и гетероферментативными молочнокислыми бактериями.

Гомоферментативное молочнокислое брожение

При гомоферментативном молочнокислом брожении углевод сначала окисляется до пирувата по гликолитическому пути, затем пируват восстанавливается до молочной кислоты НАДН +Н (образовавшегося на стадии гликолиза при дегидрировании глицеральдегид-3-фосфата) при помощи лактатдегидрогеназы . От стереоспецифичности лактатдегидрогеназы и наличия лактатрацемазы зависит, какой энантиомер молочной кислоты будет превалировать в продуктах- L-, D- молочная кислота или же DL-рацемат . Продуктом гомоферментативного молочнокислого брожения является молочная кислота , которая составляет не менее 90 % всех продуктов брожения. Промежуточными продуктами являются: глюкозо-6-фосфат , фруктозо-6-фосфат , фруктозо-1,6-дифосфат , 3-фосфоглицериновый альдегид, 1,3-дифосфоглицериновая кислота , пировиноградная кислота . Примеры гомоферментативных молочнокислых бактерий: Lactobacillus casei
, L. acidophilus
, Streptococcus lactis
.

Гетероферментативное молочнокислое брожение

В отличие от гомоферментативного брожения, деградация глюкозы идет по пентозофосфатному пути, образующийся из ксилулозо-5-фосфата глицеральдегид-3-фосфат окисляется до молочной кислоты, а ацетилфосфат восстанавливается до этанола (некоторые гетероферментативные молочнокислые бактерии окисляют полученный этанол частично или полностью до ацетата). Таким образом, при гетероферментативном молочнокислом брожении образуется больше продуктов: молочная кислота,

Природа позволяет человеку пользоваться теми благами, что в ней имеются. При этом люди стараются эти богатства приумножать, создавать что-то новое и познавать еще неизвестное. Бактерии — это мельчайшие создания природы, которых также научился использовать в своих целях человек.

Но не только вред, сопряженный с патогенными процессами и болезнями, несут в себе эти прокариотические организмы

Они еще являются источником важного промышленного процесса, который издревле применяется людьми — брожения. В данной статье мы рассмотрим, что собой представляет этот процесс и как осуществляется конкретно молочнокислое сбраживание веществ

III Стратегии инициализации ЯМБ

• Добавляют SO2 в соответствующем количестве, основанном на условии качества ягоды, температуры, pH фактора (учитывая необходимость ограничения дозы SO2, когда pH фактор низок).

• Поддерживают соответствующую температуру (от 18 ° до 22°C), предотвращают любое внезапное охлаждение­, так же как чрезмерно высокую температуру (26°C или больше), особенно если вино имеет высокий уровень SO2 (общ.  SO2> 40 мг/л).

• Регулярно (один раз в неделю) производится агитация (взмучивание) осадка, чтобы гарантировать, что дрожжам и бактериям достаются питательные вещества в необходимом количестве.

• Ждут конца алкогольного брожения (АБ) перед продолжением ферментации, таким образом можно извлечь выгоду из оптимального контакта с составами дрожжевого осадка, что, в зависимости от качества осадка, стимулирует запуск ЯМБ.

• Добавляют питательные вещества: у O. oeni (Henick-Kling, 1988) есть очень точные пищевые потребности в углероде (сахар), азоте (свободные аминокислоты и пептиды), витаминах (никотиновая кислота, тиамин, биотин и пантотеоновая кислота), минеральных ионах (марганец, магний, калий и натрий), и производных пурина (гуанин и аденин, и т.д.). Согласно недавнему исследованию (Rauhut и др., 2004), добавление цистеина и глутатиона после АБ способствует стимулированию роста МКБ. Мы также знаем, что добавление сложных питательных веществ, которые включают аминокислоты, во время АБ, замедляет ассимиляцию азота дрожжами, который мешает им сверхпотреблять аминокислоты, которые жизненно важны и для бактерий. С вышесказанным коррелирует и следующее:

• Замечено, что наличие дуба активизирует ЯМБ. Дубовые резервуары, или используемые при некоторых технологиях дубовые планки, чипсы также создают благоприятную среду для ЯМБ.

• Выбирают приспособленные расы ЧК МКБ, что гарантирует быстрое начало ЯМБ и лучшего контроля над ароматом и составами вкуса (Bauer и Dicks, 2004). Хотя могут быть использованы несколько типов МКБ, O. oeni доказал свою эффективность среди виноделов, становясь их любимым выбором.

ЧК бактерий могут быть внесены в сусло одновременно с дрожжами в начале (cо-инокуляция) или в конце (пост-инокуляция) АБ. Внесение может также быть сделана через несколько дней, даже спустя недели после АБ вина (отсроченная инокуляция). Большинство виноделов проводят ЯМБ после АБ, чтобы предотвратить риск «piqûre lactique» — чрезмерного производства уксусной кислоты. Однако, согласно недавнему исследованию, у метода cо-инокуляции есть три главных преимущества: облегченная акклиматизация бактерий в отсутствии алкоголя, что улучшает поглощение питательных веществ (по сравнению с их внесением после алкогольного брожения), и способствует раскрытию фруктовых нот вина. Ценится также аспект безопасности cо-инокуляции, поскольку такой способ позволяет вину быстро использовать в своих интересах доминирующее действие чистых культур, и, при более легких условиях, гарантирует больший контроль над ЯМБ. Cо-инокуляция также помогает защитить вино от порчи, вызванной Brettanomyces, чье развитие происходит во время фазы задержки между концом брожения и началом ЯМБ.

Норма внесения МКБ также очень важна. Минимальное население 106 клеток/мл считается необходимым, чтобы вызвать ЯМБ. Если порог не достигнут, начало и конец ЯМБ могут быть значительно затянуты.

Существуют определенные МКБ, особенно хорошо приспособленные к использованию в cо-инокуляции. Комплект Duo-RieslingTM — первенец линии дуэтов дрожжи/бактерии, разработанный Lallemand согласно сортовому и винному стилю, и хорошо приспособлен в плане эффективности брожения и формирования ароматики вина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector