Устьице
Содержание:
- Расположение устьиц
- Разнообразие листьев по внешнему строению
- Функции листа
- Типы устьиц[править | править код]
- Устьице
- Внешнее строение
- В чем разница между устьицами и чечевицами?
- Влияние факторов среды на внешнее строение листа
- Листорасположение
- Внешнее и внутреннее устройство
- Дыхание и фотосинтез растений
- Рекомендованная литература и полезные ссылки
- Зачем растениям листья? Функции листьев.
- Внутреннее строение листа
- Значение устьиц
- Листопад
- Внешнее строение листа
- Предназначение устьичной щели
Расположение устьиц
Как уже было сказано, устьица — это структуры живой покровной ткани растений. Она называется кожица. Устьица растений расположены, в большинстве случаев, на нижней стороне листа. Это своеобразная защита от прямых солнечных лучей. Также при этом лучше сохраняется запас воды в клетках растений. Но не все листья расположены горизонтально. Например, у ирисов они ростут вертикально. Поэтому устьица распространены со всех сторон листьев.
По-другому обстоит дело у водных растений. Нижня часть их листьев не может содержать устьиц. Ведь они полностью погружены в воду, а значит, не смогут осуществлять свои функции. Устьица таких растений находятся на поверхности листовой пластинки. Количество их достаточно велико, поскольку на одном квадратном сантиметре листа — до нескольких десятков тысяч таких образований.
Разнообразие листьев по внешнему строению
Листья: простые и сложные
По листовой пластинке:
Различают листья простые и сложные.
Простые листья
Простые листья имеют одну листовую пластинку с черешком, которая может быть целостной или расчлененной. Простые листья опадают во время листопада полностью. Они делятся на листья с цельной и расчлененной листовой пластинкой. Листья с цельной листовой пластинкой называются цельными.
Формы листовой пластинки отличаются общим контуром, формой верхушки и основания. Контур листовой пластинки может быть овальным (акация), сердцевидным (липа), игольчатым (хвойные), яйцевидным (груша), стреловидным (стрелолист) и т. п.
Кончик (верхушка) листовой пластинки бывает острым, тупым, притупленным, заостренным, выемчатым, усикообразным и т. п.
Основание листовой пластинки может быть округлым, сердцевидным, стреловидным, копьевидным, клиновидным, неравносторонним и т. п.
Край листовой пластинки может быть цельнокрайним или с выемками (не достигают ширины пластинки). По формам выемок по краю листовой пластинки различают листья зубчатые (зубцы имеют равные стороны – орешник, бук и т. п.), пильчатые (одна сторона зубца длиннее другой – груша), бородчатые (выемки острые, выпуклости тупые – шалфей) и др.
Сложные листья
Сложные листья имеют общий черешок (рахис). К нему крепятся простые листочки. Каждый из листочков может опадать самостоятельно. Сложные листья делятся на тройчатые, пальчатые и перистые. Сложные тройчатые листья (клевер) имеют три листочка, которые короткими черешками крепятся к общему черешку. Пальчатосложные листья подобны по строению предыдущим, но количество листочков больше трех. Перистосложные листья состоят из листочков, расположенных по всей длине рахиса. Бывают парноперистосложные и непарноперистосложные. Парноперистосложные листья (горох посевной) состоят из простых листочков, которые попарно расположены на черешке. Непарноперистосложные листья (шиповник, рябина) заканчиваются одним непарным листочком.
По способу членения
Листья делят на:
1) лопастные, если членение листовой пластинки доходит до 1 /3 всей ее поверхности; выступающие части называют лопастями;
2) раздельные, если членение листовой пластинки доходит до 2/3 всей ее поверхности; выступающие части называют долями;
3) рассеченные, если степень членения доходит до центральной жилки; выступающие части называют сегментами.
Функции листа
Лист является внешним органом, с помощью которого выполняется фотосинтез, дыхание, транспирация, гуттация и вегетативное размножение. Более того, он способен накапливать влагу и органические вещества посредством устьиц, а также обеспечивать растению большую приспособляемость к сложным условиям окружающей среды.
Поскольку вода — основная внутриклеточная среда, выведение и циркуляция жидкости внутри дерева или цветка одинаково важны для его жизнедеятельности. При этом растение усваивает лишь 0,2 % всей влаги, проходящей через него, остальная же часть уходит на транспирацию и гуттацию, за счёт которых происходит передвижение растворённых минеральных солей и охлаждение.
Вегетативное размножение зачастую происходит посредством срезания и укоренения листьев цветков. Многие комнатные растения выращиваются подобным образом, поскольку только так можно сохранить чистоту сорта.
Как было сказано ранее, видоизменённые листья помогают приспособиться к различным природным условиям. Например, трансформация в колючки помогает пустынным растениям снизить испарение влаги, усики усиливают функции стебля, а большие размеры зачастую служат для сохранения жидкости и полезных веществ там, где климатические условия не позволяют подпитывать запасы регулярно.
И этот список можно продолжать бесконечно. При этом сложно не заметить, что данные функции одинаковы для листьев цветков и деревьев.
Типы устьиц[править | править код]
Число сопровождающих клеток и их расположение относительно устьичной щели позволяют выделить ряд типов устьиц:
- аномоцитный — сопровождающие клетки не отличаются от остальных клеток эпидермиса, тип весьма обычен для всех групп высших растений, за исключением хвойных;
- диацитный — характеризуется только двумя сопровождающими клетками, общая стенка которых находится под прямым углом к замыкающим клеткам;
- парацитный — сопровождающие клетки располагаются параллельно замыкающим и устьичной щели;
- анизоцитный — замыкающие клетки окружены тремя неравными сопровождающими, одна из которых заметно крупнее или мельче остальных, такой тип обнаружен только у цветковых растений;
- тетрацитный — четыре сопровождающие клетки, характерен для однодольных;
- энциклоцитный — сопровождающие клетки образуют узкое кольцо вокруг замыкающих клеток;
- актиноцитный — несколько сопровождающих клеток радиально расположены вокруг устьичных клеток, напоминая лучи звезды;
- перицитный — замыкающие клетки окружены одной побочной сопровождающей клеткой, устьице не соединено с сопровождающей клеткой антиклинальной клеточной стенкой;
- десмоцитный — замыкающие клетки окружены одной сопровождающей клеткой, устьице соединено с ней антиклинальной клеточной стенкой;
- полоцитный — замыкающие клетки окружены одной сопровождающей не полностью: к одному из устьичных полюсов примыкает одна или две эпидермальные клетки; устьице прикреплено к дистальной стороне единственной сопровождающей клетки, имеющей U-образную или подковообразную форму;
- стефаноцитный — устьице, окружённое четырьмя или более (обычно пять-семь) слабодифференцированными сопровождающими клетками, образующими более или менее отчётливую розетку;
- латероцитный — такой тип устьичного аппарата рассматривается большинством ботаников как простая модификация аномоцитного типа.
У двудольных распространённым является парацитный тип устьиц. Замыкающие клетки почковидной (бобовидной) формы — такими они видны с поверхности листа — несут хлоропласты, тонкие неутолщённые участки оболочки образуют выступы (носики) закрывающие устьичную щель.
Наружные стенки замыкающих клеток обычно имеют выросты, что хорошо видно на поперечном разрезе устьица. Пространство, ограниченное этими выростами, называют передним двориком. Нередко аналогичные выросты наблюдаются и у внутренних оболочек замыкающих клеток. Они образуют задний дворик, или внутренний, соединённый с крупным межклетником — подустьичной полостью.
У однодольных парацитное строение устьиц отмечено у злаковых. Замыкающие клетки имеют гантелевидную форму — сужены в средней части и расширены на обоих концах, при этом стенки расширенных участков очень тонкие, а в средней части замыкающих клеток сильно утолщены. Хлоропласты располагаются в пузыревидных окончаниях клеток.
Для одних видов растений характерен только один тип устьичного аппарата, для других — два и несколько даже в пределах одной листовой пластинки.
Устьице
Для соприкосновения листа с атмосферой имеются поры — устьица. Устьице — это отверстие (щель), ограниченная двумя замыкающими клетками. Устьица встречаются у всех наземных органов растения, но больше всего у листьев. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие. Протопласты замыкающих клеток связаны в единое целое перфорациями в основании граничащих общих стенок. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на клеточные стенки, и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель.
В последнее время доказано, что для движения устьиц большое значение имеет также расположение микрофибрилл целлюлозы. Если обычно в клетках листьев целлюлозные фибриллы ориентированы в длину и в этом направлении утолщены, то в замыкающих клетках устьиц микрофибриллы организованы радиально, что усиливает устойчивость к процессу растяжения.
У злаков строение замыкающих клеток несколько иное. Они представлены двумя удлиненными клетками, на концах которых стенки более тонкие. При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель.
Число устьичных отверстий колеблется в зависимости от вида растений от 10 до 600 на 1 мм2 листа. У многих растений (75% видов), в том числе для большинства древесных, устьица расположены на нижней стороне листа. Диаметр устьичных щелей составляет всего 3—12 мкм. Устьица соединяют внутренние пространства листа с внешней средой. Вода поступает в лист через сеть жилок, в которых расположены сосудистые элементы. Возможны три пути испарения:
- через устьица — устьичная,
- кутикулу — кутикулярная,
- через чечевички — лентикулярная транспирация.
Впервые разграничение на кутикулярную и устьичную транспирацию было введено в 1877 г.
Основные типы устьичного аппарата листа растений.
- аномоцитный (у всех высших растений, кроме хвощей),
- диацитный (у папоротникови цветковых),
- парацитный (у папоротников, хвощей, цветковых и гнетовых),
- анизоцитный (только у цветковых),
- тетрацитный (главным образом у однодольных),
- энциклоцитный (у папоротников, голосеменныхи цветковых).
Устьица представляют собой высокоспециализированные образования эпидермы, состоящие из двух замыкающих клеток, между которыми имеется своеобразный межклетник, или устьичная щель.
Щель может расширяться и сужаться, регулируя транспирацию и газообмен. Под щелью располагается дыхательная, или воздушная, полость, окруженная клетками мякоти листа. Клетки эпидермы, примыкающие к замыкающим, получили название побочных, или околоустьичных. Они участвуют в движении замыкающих клеток. Замыкающие и побочные клетки образуют устьичный аппарат.
Число и распределение устьиц на листе или побеге варьируют в зависимости от вида растений и условий жизни. Число их обычно колеблется от нескольких десятков до нескольких сотен на 1 кв.мм поверхности.
Механизм движения замыкающих клеток весьма сложен и неодинаков у разных видов. У большинства растений при недостаточном водоснабжении в ночные часы, а иногда и днем тургор в замыкающих клетках понижается и щель замыкается, снижая тем самым уровень транспирации. С повышением тургора устьица открываются. Считают, что главная роль в этих изменениях принадлежит ионам калия. Существенное значение в регуляции тургора имеет присутствие в замыкающих клетках хлоропластов. Первичный крахмал хлоропластов, превращаясь в сахар, повышает концентрацию клеточного сока. Это способствует притоку воды из соседних клеток и переходу замыкающих клеток в упругое состояние.
Общая площадь устьичных отверстий составляет лишь 1-2% площади листа. Несмотря на это, транспирация при открытых устьичных щелях достигает 50-70% испарения, равного по площади открытой водной поверхности.
Внешнее строение
Листьям свойственны разные размеры: от нескольких миллиметров до 10-20 метров (такие самые длинные листья растут у пальм). Продолжительность жизни листьев также может длиться от нескольких месяцев вплоть до 15 лет (у некоторых тропических растений). Размер и форма листьев определяются наследственными признаками.
Что же касается внешнего строения листьев, то всякий лист состоит из листовой пластинки, черешка (за исключением так званных «сидячих листьев») и прилистников, характерных для ряда растительных семейств. Также листья могут быть, как простыми (с одной листовой пластиной), так и сложными (у которых листовых пластин несколько).
Листовая пластина – это расширенная, как правило, плоская часть листа, ответственная за функции фотосинтеза, газообмена, и транспирации, а порой и вегетативного размножения.
Основание листа (листовая подушка) – это часть листа, соединяющая его со стеблем. Именно тут располагается образовательная ткань, дающая рост всему листу.
Прилистники – это парные листовидные образования в основании листа. Они имеются не у всех листьев, также могут опадать при развертывании листа либо наоборот сохраняться. Прилистники защищают пазушные боковые почки и вставочную образовательную часть листа.
Черешок – это суженная часть листа, которая соединяет листовую пластину с листовой подушкой и стеблем. Именно черешок ответственен за ряд очень важных функций в жизнедеятельности листа: он ориентирует лист по направлению к свету, является вместилищем вставочной образовательной ткани, за счет которой происходит рост листа. Также черешок имеет механическое значение для ослабления ударов по листовой пластинке от дождя, ветров, града и т. д.
Вот так выглядит внешнее строение листьев на рисунке.
В чем разница между устьицами и чечевицами?
Устьица — это поры в эпидермисе листьев, стебля и других органов, которые используются для контроля газообмена. | Чечевицы — это линзовидные пятна или поры, присутствующие на древесных стволах или стеблях растений. |
Расположение | |
Устьицы расположены в эпидермисе. | Чечевички расположены в перидерме. |
Регулирование | |
Открытие и закрытие устьиц можно регулировать. | Lenticels всегда открыты. |
Способность к фотосинтезу | |
Защитные клетки устьиц содержат хлорофиллы, поэтому они могут фотосинтезировать. | Чечевицы не способны к фотосинтезу. |
Функция | |
Устьицы отвечают за транспирацию и газообмен. | Lenticels отвечают в основном за газообмен. |
Активное время | |
Устьицы активны в дневное время. | Lenticels активны в ночное время. |
Камеры охраны | |
У устьиц есть замыкающие клетки. | Чечевицы не имеют замыкающих клеток. |
Количество выданного водяного пара | |
Устьицы выделяют в атмосферу большое количество водяного пара. | Чечевицы пропускают в атмосферу небольшое количество водяного пара. |
Присутствие в фруктах и корнях дыхательных путей | |
Устьицы не встречаются в плодах и корнях. | Чечевицы также содержатся во фруктах и респираторных корнях. |
Влияние факторов среды на внешнее строение листа
Для выживания растения крайне важна степень его приспособляемости. Например, для влажных мест характерны крупные листовые пластины и большое количество устьиц, в то время как в засушливых регионах этот механизм действует иначе. Ни цветы, ни деревья не отличаются размерами, а количество пор заметно сокращено, чтобы воспрепятствовать избыточному испарению.
Таким образом, можно проследить, как части растений под воздействием окружающей среды со временем видоизменяются, что влияет и на количество устьиц.
Хотя учёные давно знали об испарении воды поверхностью листа, первым, кто наблюдал устьица, был итальянский натуралист Марчелло Мальпиги , который это открытие опубликовал в 1675 году в своей работе Anatome plantarum
. Однако он не понял их настоящую функцию. В то же время его современник Неемия Грю развил гипотезу об участии устьиц в вентиляции внутренней среды растения и сравнил их с трахеями насекомых . Прогресс в изучении наступил в XIX веке , и тогда же, в 1827 году , швейцарским ботаником Декандолем было впервые использовано слово „stoma“. Изучением устьиц в то время занимались Гуго фон Моль , который открыл основной принцип открывания устьиц и Симон Швенденер , классифицировавший устьица по типу их конструкции.
Некоторые аспекты функционирования устьиц продолжают интенсивно изучаться и в настоящее время; материалом в основном служат Коммелина обыкновенная (Commelina communis
), Боб садовый (Vicia faba
), Кукуруза сахарная (Zea mays
) .
Листорасположение
Это расположение в определенном порядке листьев на стебле. Листорасположение – это наследственный признак, но во время развития растения при приспособлении к условиям освещения может изменяться (например, в нижней части листорасположение противоположное, в верхней – очередное). Различают три вида листорасположения: спиральное, или очередное, супротивное и кольчатое.
Виды листорасположения
Спиральное
Присуще большинству растений (яблоня, береза, шиповник, пшеница). При этом от узла отходит лишь один лист. Расположены листья на стебле по спирали.
Супротивное
В каждом узле два листа сидят один напротив другого (сирень, клен, мята, шалфей, крапива, калина и т. п.). В большинстве случаев листья двух соседних пар отходят в двух взаимно противоположных плоскостях, не затеняя друг друга.
Кольчатое
От узла отходит больше двух листьев (элодея, вороний глаз, олеандр и т. п.).
Форма, размер и расположение листьев приспособлены к условиям освещения. Взаимное расположение листьев напоминает мозаику, если посмотреть на растение сверху в направлении света (у граба, вяза, клена и др.). Такое расположение называется листовой мозаикой. При этом листья не затеняют друг друга и используют свет эффективно.
Внешнее и внутреннее устройство
Листья растений весьма разнообразны по форме и внутреннему строению, однако почти всегда в них можно различить листовую пластинку, черешок и основание, которым они прикрепляются к стеблю.
Листовая пластинка состоит из кожицы, мякоти и жилок.
Строение мякоти
Мякоть находится под кожицей и называется паренхимой. Мякоть осуществляет основную функцию — фотосинтез. Мякоть состоит из двух типов тканей: столбчатой и губчатой.
Столбчатая ткань состоит из вытянутых клеток расположенных вертикально и прилегающих к верхней кожице органа. Именно эта ткань осуществляет фотосинтез за счет находящихся в клетках хлоропластов. Они же придают пластине характерный зеленый цвет.
Губчатая ткань состоит из клеток округлой формы, расположенных рыхло. Между ними образуются межклетники заполненные воздухом. В межклетниках накапливаются пары жидкости, поступающие из клеток. Губчатая ткань, также осуществляет фотосинтез. Помимо этого, она служит для газообмена и транспирации.
Примечание
Количество слоев клеток столбчатой и губчатой тканей зависит от количества света, падающего на растение. В листьях выросших на свету, столбчатая ткань развита сильнее, чем у листьев, выросших в условиях затемнения.
Строение жилок
Жилки — это проводящие пучки листа. Они осуществляют перенос органических веществ и воды.
Жилки состоят из:
- волокон — сильно вытянутых клеток с толстыми стенками, придающих прочность;
- ситовидных трубок (луба), состоящих из живых клеток, вытянутых в длину и соединенных друг с другом отверстиями, проводящими органические вещества (например, сахар);
- сосудов, также называемых древесиной, по которым перемещается вода и растворенные в ней минеральные вещества.
Примечание
Жилкование — это расположение проводящих пучков внутри пластины.
Существует множество типов жилкования, например:
- Перистое — в середине находится основная жилка, от которой отходят боковые. Типичные носители: яблоня и береза.
- Дуговое — главные пучки образуют дуги от одного края до другого. Встречается у подорожника и ландыша.
- Пальчатое — все жилки отходят от одной точки у основания листа. Можно увидеть у клена или герани.
- Вильчатое — пучки располагаются вдоль, каждая жилка делится на две, не пересекаясь при этом друг с другом. Характерно для древних растений, например папоротника.
- Параллельное — жилки проходят вдоль листа от основания до конца почти параллельно.
Строение листовой кожицы
Верхняя кожица (эпидерма) — один из видов покровной ткани растений.
Кожица состоит из одного слоя живых, разных по размерам и форме, плотно сомкнутых друг с другом часто прозрачных клеток.
Функции кожицы:
- защищает от механических повреждений;
- предотвращает пересыхание;
- защищает орган от проникновения вредоносных бактерий и вирусов.
За счет прозрачности кожицы солнечный свет беспрепятственно попадает в мякоть листовой пластины.
Поверхность кожицы часто имеет наружный восковой слой, волоски или различные наросты. Эти приспособления усиливают защитные функции.
Дыхание и фотосинтез растений
Все живые организмы, в том числе и растения, способны к дыханию. Этот всем известный факт является обязательным условием их существования. Суть его заключается в поглощении кислорода, окислении органических веществ и выделении углекислого газа. Но планетарное значение растений заключается в осуществлении обратного процесса — фотосинтеза. В его ходе углекислый газ поглощается, а кислород, необходимый всему живому, выделяется. Растения способны осуществлять два этих процесса одновременно с разной интенсивностью во многом благодаря деятельности устьиц, находящихся на поверхности листа.
Рекомендованная литература и полезные ссылки
- Лотова Л. И. Ботаника: Морфология и анатомия высших растений: Учебник. — 3-е, испр. — М.: КомКнига, 2007. — С. 221—261.
- Коровкин О. А. Анатомия и морфология высших растений: словарь терминов. — М.: Дрофа, 2007. — 268, с. — (Биологические науки: Словари терминов). — 3000 экз. — ISBN 978-5-358-01214-1.
- Фёдоров Ал. А., Кирпичников М. Э., Артюшенко З. Т. Атлас по описательной морфологии высших растений. Лист / Академия наук СССР. Ботанический институт им. В. Л. Комарова. Под общ. ред. чл.-кор. АН СССР П. А. Баранова. Фотографии В. Е. Синельникова. — М.—Л.: Изд-во АН СССР, 1956. — 303 с. — 3 000 экз.
- Niklas, Karl J. Plant Biomechanics: An Engineering Approach to Plant Form and Function. — University of Chicago Press, 1992. — 622 p. — ISBN 978-0226586304.
- Roberts, Keith. Handbook of Plant Science. — Wiley-Interscience, 2007. — Т. 1. — 1648 p. — ISBN 978-0470057230.
Зачем растениям листья? Функции листьев.
Частично мы ответили на этот вопрос во вступлении: будучи сложным органом, лист имеет огромное значение в жизни всякого растения. Из наиболее важных задач, которые выполняют листья можно отметить:
- Фотосинтез, посредством которого осуществляется жизнедеятельность листьев, питание растений солнечной энергией, а заодно вырабатывается кислород.
- Транспирация – процесс водного обмена, именно листья отвечают, как за впитывание влаги, необходимой растению, так и за испарение излишков воды.
- Газообмен – процесс удаления одних газов из растительного организма и поглощение других.
Также у многих представителей растительного царства листья выполняют и другие не менее важные функции:
- Вегетативное размножение посредством листьев осуществляется у многих цветов, например у бегонии.
- Средство защиты, как например у крапивы.
- У некоторых «хищных» растений листья даже могут охотиться: обездвиживать и высасывать добычу.
Внутреннее строение листа
Внутреннее строение листа
Снаружи лист покрыт преимущественно однослойным, иногда многослойным эпидермисом (кожицей). Он состоит из живых клеток, большинство из которых лишены хлорофилла. Сквозь них солнечные лучи легко попадают к низшим слоям клеток листа. У большинства растений кожица выделяет и создает снаружи тонкую пленку из жирообразных веществ – кутикулу, которая почти не пропускает воду. На поверхности некоторых клеток кожицы могут быть волоски, шипики, которые защищают листок от повреждений, перегрева, чрезмерного испарения воды. У растений, которые растут на суше, на нижней стороне листка в эпидермисе есть устьица (во влажных местах (капуста) – устьица с обеих сторон листа; у водяных растений (водяная лилия), листья которых плавает на поверхности, – на верхней стороне; у растений, которые погружены полностью в воду, устьиц нет). Функции устьиц: регуляция газообмена и транспирации (испарения воды листвой). В среднем на 1 квадратный миллиметр поверхности приходится 100–300 устьиц. Чем выше лист расположен на стебле, тем больше устьиц на единицу поверхности.
Между верхним и внешним слоями эпидермиса расположены клетки основной ткани – ассимиляционной паренхимы. У большинства видов покрытосеменных различают два вида клеток этой ткани: столбчатую (палисадную) и губчатую (рыхлую) хлорофиллоносные паренхимы. Вместе они составляют мезофилл листа. Под верхней кожицей (иногда – и над нижней) содержится столбчатая паренхима, которая состоит из клеток правильной формы (призматической), расположенных вертикально несколькими слоями и плотно прилегающих одна к другой. Рыхлая паренхима находится под столбчатой и над нижней кожицей, состоит из клеток неправильной формы, которые не прилегают плотно одна к другой и имеют большие межклетники, заполненные воздухом. Межклетники занимают до 25 % объёма листа. Они соединяются с устьицами и обеспечивают газообмен и транспирацию листа. Считается, что интенсивнее процессы фотосинтеза происходят в палисадной паренхиме, так как ее клетки имеют больше хлоропластов. В клетках рыхлой паренхимы хлоропластов значительно меньше. В них активно запасается крахмал и некоторые другие питательные вещества.
Сквозь ткани паренхимы проходят сосудисто-волокнистые пучки (жилки). В их состав входят проводящая ткань – сосуды (в самых мелких жилках – трахеиды) и ситовидные трубки – и механическая. Сверху сосудисто-волокнистого пучка расположена ксилема, а снизу – флоэма. По ситовидным трубкам протекают органические вещества, которые образовались в процессе фотосинтеза, ко всем органам растения. По сосудам и трахеидам к листу поступает вода с растворенными в ней минеральными веществами. Механическая ткань придает прочность листовой пластинке, опору проводящей ткани. Между проводящей системой и мезофиллом находится свободное пространство или апопласт.
Значение устьиц
Устьица расположены в покровной ткани, поэтому их главной функцией является обмен веществ организмом с окружающей средой. Одним из них является вода, процесс испарения которой называется транспирацией. Его осуществление является очень важным для того, чтобы растения не перегревались в жаркое время года, ведь это может привести к их гибели. Когда испарение нежелательно, устьица практически прекращают транспирацию, тем самым удерживая необходимую влагу.
А вот Голосеменные растения имеют особое устройство устьиц. Они закупориваются во время зимы специальной смолой. Поэтому все представители данного отдела растений являются вечнозелеными. Им не нужно сбрасывать листву, чтобы защитить себя от потери излишней влаги в зимний период. В отличие от них все Покрытосеменные сохраняют в этот период жизнеспособными лишь побег и корень. А вот их листья опадают, чтобы не потерять запас воды на зиму. Поэтому елочка «зимой и летом одним цветом».
Что такое устьица, как они устроены и осуществляют свои функции, мы достаточно подробно рассмотрели. Однако стоит еще сказать, что кроме транспирации они служат также специализированным устройством для поступления кислорода, чтобы был возможен процесс дыхания и поступления углекислого газа для осуществления фотосинтеза. Кроме того, устьица способны контролировать интенсивность всех этих процессов, которая зависит от внешних факторов, и проявляется в способности к адаптации всех живых организмов к быстро изменяющимся условиям окружающей среды.
Итак, в покровной ткани листа находятся специализированные образования, которые называются устьицами. Они состоят из бинарных замыкающих клеток и щели между ними. Благодаря деятельности этой структуры в растительном организме осуществляются важнейшие процессы испарения воды, фотосинтеза и дыхания.
движений.
Устьица
выполняют две основные функции:
осуществляют газообмен и транспирацию
(испарение).
Устьице
состоит из двух замыкающих клеток и
устьичной щели между ними. К замыкающим
примыкают побочные (околоустьичные)
клетки. Под устьицем расположена
воздушная полость. Устьица способны
автоматически закрываться или открываться
по мере необходимости. Это обусловлено
тургорными явлениями.
Степень
раскрытия устьиц зависит от интенсивности
света, кол-ва воды в листе и угл.газа. в
межклетниках, t
воздуха и др.факторов. В зависимости
от фактора, запускающего двигательный
механизм (свет или начинающийся водный
дефицит в тканях листа), различают фото-
и гидроактивное движение устьиц.
Существует также гидропаесивное
движение, вызванное изменением
оводненности клеток эпидермиса и не
затрагивающее метаболизм замыкающих
клеток. Например, глубокий водный
дефицит может вызвать подвядание листа,
эпидермальные клетки при этом, уменьшаясь
в размерах, растягивают замыкающие
клетки, и устьица открываются. Или,
наоборот, сразу после дождя эпидермальные
клетки настолько разбухают
от
воды, что сдавливают замыкающие клетки,
и устьица закрываются.
Гидропассивная
р-ция — закрывание устьичных щелей,
когда паренхимы клетки переполнены
водой и механ.сдавливают замык.клетки
Гидроактивная
открывания и закрывания — движения,
вызванные изменением в содержании воды
в замыкающих клетках устьиц.
Фотоактивная
— проявл.в открытии устьиц на свету и
закрывании в темноте.
Листопад
Листопад
Это одновременное сбрасывание листьев на период неблагоприятных условий. Основными причинами листопада является изменение продолжительности светового дня, снижение температуры. При этом усиливается отток органических веществ из листка к стеблю и корню. Наблюдается осенью (иногда, в засушливые годы, летом). Листопад является приспособлением растения для защиты от чрезмерной потери воды. Вместе с листьями удаляются разные вредные продукты обмена веществ, которые в них откладываются (например, кристаллы оксалата кальция).
Подготовка к листопаду начинается еще до наступления неблагоприятного периода. Снижение температуры воздуха приводит к разрушению хлорофилла. Другие пигменты становятся заметными (каротины, ксантофиллы), поэтому листья изменяют окраску.
Клетки черешка около стебля начинают усиленно делиться и образуют поперек его отделительный слой из паренхимы, который легко расслаивается. Они становятся округлыми, гладкими. Между ними возникают большие межклетники, которые позволяют клеткам легко отделяться. Лист остается прикрепленным к стеблю лишь благодаря сосудисто-волокнистым пучкам. На поверхности будущего листового рубца заранее образуется защитный слой пробковой ткани.
У однодольных растений и травянистых двудольных не образуется отделительный слой. Лист отмирает, постепенно разрушается, оставаясь на стебле.
Опавшие листья разлагаются почвенными микроорганизмами, грибами, животными.
Внешнее строение листа
Внешнее строение листа
Лист состоит из листовой пластинки и черешка. Листовая пластинка плоская. На листовой пластинке можно выделить основу, кончик и края. В нижней части черешка расположено утолщенное основание листа. В листовой пластинке ветвятся жилки – сосудисто-волокнистые пучки. Выделяют центральную и боковые жилки. Черешок вращает пластинку для лучшего улавливания лучей света. Лист опадает вместе с черешком. Листья, имеющие черешок, называются черешковыми. Черешки бывают короткими или длинными. Листья, не имеющие черешка, называются сидячими (например, у кукурузы, пшеницы, наперстянки). Если нижняя часть листовой пластинки охватывает стебель в виде трубки или желобка, то образуется листовое влагалище (у некоторых злаков, осок, зонтичных). Оно защищает стебель от повреждений. Побег может пронизывать листовую пластинку насквозь – пронзенный лист.
Формы листа
Края листа
Формы черешка
На поперечном срезе черешки могут иметь форму: цилиндрическую, ребристую, плоскую, крылатую, желобчатую и т. п.
Некоторые растения (розоцветные, бобовые и т. п.), кроме пластинки и черешка, имеют особые выросты – прилистники. Они прикрывают боковые почки и защищают их от повреждений. Прилистники могут иметь вид маленьких листков, пленок, колючек, чешуек. В некоторых случаях бывают очень большими и играют важную роль в фотосинтезе. Бывают свободными или приросшими к черешку.
Предназначение устьичной щели
Наверное, нет нужды подробно останавливаться на таком аспекте, как функции листа. Об этом знает даже школьник. А вот за что отвечают устьица? Их задача — обеспечение транспирации (процесс движения воды через растение и её испарение через наружные органы, такие как листья, стебли и цветы), что достигается за счёт работы замыкающих клеток. Этот механизм защищает растение от иссушения в жаркую погоду и не позволяет начаться процессу гниения в условиях чрезмерной влажности. Принцип его работы предельно прост: если количество жидкости в клетках недостаточно высоко, давление на стенки падает, и устьичная щель смыкается, сохраняя требуемое для поддержания жизнедеятельности содержание влаги.
И напротив, её переизбыток ведёт к усилению напора и открытию пор, через которые лишняя влага испаряется. Благодаря этому, роль устьиц в охлаждении растений также велика, поскольку температура воздуха вокруг снижается именно посредством транспирации.
Также под щелью расположена воздушная полость, служащая для газообмена. Воздух проникает в растение сквозь поры, чтобы в дальнейшем вступить в процесс фотосинтеза и дыхания. Лишний кислород затем выходит в атмосферу посредством всё той же устьичной щели. При этом её наличие или отсутствие часто используется для классификации растений.